Graph Centrality
EvolvingGraphs.Centrality.katz
— Function.katz(g, alpha = 0.1)
Compute the Katz centrality for a static graph g
.
References:
L. Katz A new index derived from sociometric data analysis. Psychometrika, 18:39-43, 1953.
katz(g, alpha = 0.3)
katz(g, alpha, beta; mode = :broadcast)
Computes the katz centrality for an evolving graph g
, where alpha
and beta
are scalars. alpha
controls the influence of long walks and beta
controls the influence of walks happened long time ago. By default, mode = :broadcast
computes the broadcast centrality. Otherwise if mode = :receive
, we compute the receiving centrality.
Example
julia> using EvolvingGraphs
julia> using EvolvingGraphs.Centrality
julia> g = evolving_graph_from_arrays(["A", "B", "B", "C", "E", "A", "B", "D"], ["B", "F", "G", "E", "G", "B", "F", "F"], [1,1,1,2,2,2,2,2])
Directed EvolvingGraph 7 nodes, 8 static edges, 2 timestamps
julia> katz(g)
7-element Array{Tuple{EvolvingGraphs.Node{String},Float64},1}:
(Node(A), 0.510104)
(Node(B), 0.494488)
(Node(F), 0.260257)
(Node(G), 0.260257)
(Node(C), 0.361757)
(Node(E), 0.338334)
(Node(D), 0.338334)
julia> katz(g, 0.3, 0.4, mode = :receive)
7-element Array{Tuple{EvolvingGraphs.Node{String},Float64},1}:
(Node(A), 0.0)
(Node(B), 0.658926)
(Node(F), 1.0)
(Node(G), 0.658926)
(Node(C), 0.0)
(Node(E), 0.204852)
(Node(D), 0.0)
References:
P. Grindrod, D. J. Higham, M. C. Parsons and E. Estrada Communicability across evolving networks. Physical Review E, 83 2011.
P. Grindrod and D. J. Higham, A matrix iteration for dynamic network summaries. SIAM Review, 55 2013.