Graph Centrality
EvolvingGraphs.Centrality.katz — Function.katz(g, alpha = 0.1)Compute the Katz centrality for a static graph g.
References:
L. Katz A new index derived from sociometric data analysis. Psychometrika, 18:39-43, 1953.
katz(g, alpha = 0.3)
katz(g, alpha, beta; mode = :broadcast)Computes the katz centrality for an evolving graph g, where alpha and beta are scalars. alpha controls the influence of long walks and beta controls the influence of walks happened long time ago. By default, mode = :broadcast computes the broadcast centrality. Otherwise if mode = :receive, we compute the receiving centrality.
Example
julia> using EvolvingGraphs
julia> using EvolvingGraphs.Centrality
julia> g = evolving_graph_from_arrays(["A", "B", "B", "C", "E", "A", "B", "D"], ["B", "F", "G", "E", "G", "B", "F", "F"], [1,1,1,2,2,2,2,2])
Directed EvolvingGraph 7 nodes, 8 static edges, 2 timestamps
julia> katz(g)
7-element Array{Tuple{EvolvingGraphs.Node{String},Float64},1}:
 (Node(A), 0.776825)
 (Node(B), 0.3916)
 (Node(F), 0.0910698)
 (Node(G), 0.0910698)
 (Node(C), 0.350619)
 (Node(E), 0.227674)
 (Node(D), 0.227674)
julia> katz(g, 0.3, 0.4, mode = :receive)
7-element Array{Tuple{EvolvingGraphs.Node{String},Float64},1}:
 (Node(A), 0.0)
 (Node(B), 0.441673)
 (Node(F), 1.0)
 (Node(G), 0.548645)
 (Node(C), 0.0)
 (Node(E), 0.42231)
 (Node(D), 0.0)References:
P. Grindrod, D. J. Higham, M. C. Parsons and E. Estrada Communicability across evolving networks. Physical Review E, 83 2011.
P. Grindrod and D. J. Higham, A matrix iteration for dynamic network summaries. SIAM Review, 55 2013.